Copied to
clipboard

G = C62.36D6order 432 = 24·33

19th non-split extension by C62 of D6 acting via D6/C2=S3

metabelian, supersoluble, monomial

Aliases: C62.36D6, (C6×C12)⋊3S3, (C6×C12)⋊4C6, C12⋊S36C6, C12.98(S3×C6), He37(C4○D4), C12.59D6⋊C3, He36D47C2, (C3×C12).50D6, C327D43C6, C324Q86C6, He34D411C2, He33Q811C2, C62.12(C2×C6), C325(C4○D12), (C2×He3).22C23, (C4×He3).49C22, C32⋊C12.11C22, (C22×He3).29C22, (C4×C3⋊S3)⋊4C6, C6.26(S3×C2×C6), (C2×C4×He3)⋊4C2, (C4×C32⋊C6)⋊9C2, (C2×C6).56(S3×C6), C3.2(C3×C4○D12), C321(C3×C4○D4), (C2×C4)⋊3(C32⋊C6), (C3×C12).12(C2×C6), (C2×C12).26(C3×S3), C4.16(C2×C32⋊C6), C3⋊Dic3.2(C2×C6), (C3×C6).4(C22×C6), (C3×C6).22(C22×S3), C22.2(C2×C32⋊C6), C2.5(C22×C32⋊C6), (C2×C32⋊C6).10C22, (C2×C3⋊S3).1(C2×C6), SmallGroup(432,351)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C62.36D6
C1C3C32C3×C6C2×He3C2×C32⋊C6C4×C32⋊C6 — C62.36D6
C32C3×C6 — C62.36D6
C1C4C2×C4

Generators and relations for C62.36D6
 G = < a,b,c,d | a6=b6=1, c6=d2=b3, ab=ba, cac-1=ab2, dad-1=ab-1, bc=cb, dbd-1=b-1, dcd-1=c5 >

Subgroups: 677 in 156 conjugacy classes, 52 normal (36 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, C62, C4○D12, C3×C4○D4, C32⋊C6, C2×He3, C2×He3, C3×Dic6, S3×C12, C3×D12, C3×C3⋊D4, C324Q8, C4×C3⋊S3, C12⋊S3, C327D4, C6×C12, C6×C12, C32⋊C12, C4×He3, C2×C32⋊C6, C22×He3, C3×C4○D12, C12.59D6, He33Q8, C4×C32⋊C6, He34D4, He36D4, C2×C4×He3, C62.36D6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C4○D4, C3×S3, C22×S3, C22×C6, S3×C6, C4○D12, C3×C4○D4, C32⋊C6, S3×C2×C6, C2×C32⋊C6, C3×C4○D12, C22×C32⋊C6, C62.36D6

Smallest permutation representation of C62.36D6
On 72 points
Generators in S72
(2 70 60)(3 49 71)(5 61 51)(6 52 62)(8 64 54)(9 55 65)(11 67 57)(12 58 68)(13 30 45 19 36 39)(14 40 25 20 46 31)(15 21)(16 33 48 22 27 42)(17 43 28 23 37 34)(18 24)(26 32)(29 35)(38 44)(41 47)
(1 53 69 7 59 63)(2 54 70 8 60 64)(3 55 71 9 49 65)(4 56 72 10 50 66)(5 57 61 11 51 67)(6 58 62 12 52 68)(13 39 36 19 45 30)(14 40 25 20 46 31)(15 41 26 21 47 32)(16 42 27 22 48 33)(17 43 28 23 37 34)(18 44 29 24 38 35)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 34 7 28)(2 27 8 33)(3 32 9 26)(4 25 10 31)(5 30 11 36)(6 35 12 29)(13 61 19 67)(14 66 20 72)(15 71 21 65)(16 64 22 70)(17 69 23 63)(18 62 24 68)(37 59 43 53)(38 52 44 58)(39 57 45 51)(40 50 46 56)(41 55 47 49)(42 60 48 54)

G:=sub<Sym(72)| (2,70,60)(3,49,71)(5,61,51)(6,52,62)(8,64,54)(9,55,65)(11,67,57)(12,58,68)(13,30,45,19,36,39)(14,40,25,20,46,31)(15,21)(16,33,48,22,27,42)(17,43,28,23,37,34)(18,24)(26,32)(29,35)(38,44)(41,47), (1,53,69,7,59,63)(2,54,70,8,60,64)(3,55,71,9,49,65)(4,56,72,10,50,66)(5,57,61,11,51,67)(6,58,62,12,52,68)(13,39,36,19,45,30)(14,40,25,20,46,31)(15,41,26,21,47,32)(16,42,27,22,48,33)(17,43,28,23,37,34)(18,44,29,24,38,35), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,34,7,28)(2,27,8,33)(3,32,9,26)(4,25,10,31)(5,30,11,36)(6,35,12,29)(13,61,19,67)(14,66,20,72)(15,71,21,65)(16,64,22,70)(17,69,23,63)(18,62,24,68)(37,59,43,53)(38,52,44,58)(39,57,45,51)(40,50,46,56)(41,55,47,49)(42,60,48,54)>;

G:=Group( (2,70,60)(3,49,71)(5,61,51)(6,52,62)(8,64,54)(9,55,65)(11,67,57)(12,58,68)(13,30,45,19,36,39)(14,40,25,20,46,31)(15,21)(16,33,48,22,27,42)(17,43,28,23,37,34)(18,24)(26,32)(29,35)(38,44)(41,47), (1,53,69,7,59,63)(2,54,70,8,60,64)(3,55,71,9,49,65)(4,56,72,10,50,66)(5,57,61,11,51,67)(6,58,62,12,52,68)(13,39,36,19,45,30)(14,40,25,20,46,31)(15,41,26,21,47,32)(16,42,27,22,48,33)(17,43,28,23,37,34)(18,44,29,24,38,35), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,34,7,28)(2,27,8,33)(3,32,9,26)(4,25,10,31)(5,30,11,36)(6,35,12,29)(13,61,19,67)(14,66,20,72)(15,71,21,65)(16,64,22,70)(17,69,23,63)(18,62,24,68)(37,59,43,53)(38,52,44,58)(39,57,45,51)(40,50,46,56)(41,55,47,49)(42,60,48,54) );

G=PermutationGroup([[(2,70,60),(3,49,71),(5,61,51),(6,52,62),(8,64,54),(9,55,65),(11,67,57),(12,58,68),(13,30,45,19,36,39),(14,40,25,20,46,31),(15,21),(16,33,48,22,27,42),(17,43,28,23,37,34),(18,24),(26,32),(29,35),(38,44),(41,47)], [(1,53,69,7,59,63),(2,54,70,8,60,64),(3,55,71,9,49,65),(4,56,72,10,50,66),(5,57,61,11,51,67),(6,58,62,12,52,68),(13,39,36,19,45,30),(14,40,25,20,46,31),(15,41,26,21,47,32),(16,42,27,22,48,33),(17,43,28,23,37,34),(18,44,29,24,38,35)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,34,7,28),(2,27,8,33),(3,32,9,26),(4,25,10,31),(5,30,11,36),(6,35,12,29),(13,61,19,67),(14,66,20,72),(15,71,21,65),(16,64,22,70),(17,69,23,63),(18,62,24,68),(37,59,43,53),(38,52,44,58),(39,57,45,51),(40,50,46,56),(41,55,47,49),(42,60,48,54)]])

62 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E3F4A4B4C4D4E6A6B6C6D6E6F···6P6Q6R6S6T12A12B12C12D12E12F12G12H12I···12V12W12X12Y12Z
order1222233333344444666666···66666121212121212121212···1212121212
size11218182336661121818222336···618181818222233336···618181818

62 irreducible representations

dim11111111111122222222226666
type++++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D6D6C4○D4C3×S3S3×C6S3×C6C4○D12C3×C4○D4C3×C4○D12C32⋊C6C2×C32⋊C6C2×C32⋊C6C62.36D6
kernelC62.36D6He33Q8C4×C32⋊C6He34D4He36D4C2×C4×He3C12.59D6C324Q8C4×C3⋊S3C12⋊S3C327D4C6×C12C6×C12C3×C12C62He3C2×C12C12C2×C6C32C32C3C2×C4C4C22C1
# reps11212122424212122424481214

Matrix representation of C62.36D6 in GL6(𝔽13)

100000
090000
003000
0001200
000040
0000010
,
1000000
0100000
0010000
000400
000040
000004
,
008000
800000
080000
000080
000008
000800
,
000080
000008
000800
008000
800000
080000

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,12,0,0,0,0,0,0,4,0,0,0,0,0,0,10],[10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,8,0,0,0,0,0,0,8,0,0,0,8,0,0,0,0,0,0,0,0,0,0,8,0,0,0,8,0,0,0,0,0,0,8,0],[0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,8,0,0,0,0,8,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0] >;

C62.36D6 in GAP, Magma, Sage, TeX

C_6^2._{36}D_6
% in TeX

G:=Group("C6^2.36D6");
// GroupNames label

G:=SmallGroup(432,351);
// by ID

G=gap.SmallGroup(432,351);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,4037,1034,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=b^3,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a*b^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽